fuzzy groupoid - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

fuzzy groupoid - перевод на русский

CATEGORY WHERE EVERY MORPHISM IS INVERTIBLE; GENERALIZATION OF A GROUP
Groupoids; Brandt groupoid; Transformation groupoid; Groupoid (category theory)

fuzzy groupoid      

математика

нечеткий группоид

groupoid         

общая лексика

группоид

fuzzy set         
  • Some Key Developments in the Introduction of Fuzzy Set Concepts.<ref name="CADsurvey"/>
SETS WHOSE ELEMENTS HAVE DEGREES OF MEMBERSHIP
Fuzzy sets; Fuzzy set theory; Fuzzification; Fuzzy subset; Credibility(fuzzy); Fuzzy category; Goguen category; Fuzzy Sets; Fuzzy relation equation; Pythagorean fuzzy set; Degree of membership; Uncertain set

общая лексика

нечёткое множество

математика

размытое (нечеткое) множество

Смотрите также

fuzzy logic

Определение

fuzzy subset
In fuzzy logic, a fuzzy subset F of a set S is defined by a "membership function" which gives the degree of membership of each element of S belonging to F.

Википедия

Groupoid

In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

  • Group with a partial function replacing the binary operation;
  • Category in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called inverse by analogy with group theory. A groupoid where there is only one object is a usual group.

In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g : A B {\displaystyle g:A\rightarrow B} , h : B C {\displaystyle h:B\rightarrow C} , say. Composition is then a total function: : ( B C ) ( A B ) A C {\displaystyle \circ :(B\rightarrow C)\rightarrow (A\rightarrow B)\rightarrow A\rightarrow C} , so that h g : A C {\displaystyle h\circ g:A\rightarrow C} .

Special cases include:

  • Setoids: sets that come with an equivalence relation,
  • G-sets: sets equipped with an action of a group G {\displaystyle G} .

Groupoids are often used to reason about geometrical objects such as manifolds. Heinrich Brandt (1927) introduced groupoids implicitly via Brandt semigroups.

Как переводится fuzzy groupoid на Русский язык